Electrical control of near-field energy transfer between quantum dots and 2D semiconductors


الملخص بالإنكليزية

We investigate near-field energy transfer between chemically synthesized quantum dots (QDs) and two-dimensional semiconductors. We fabricate devices in which electrostatically gated semiconducting monolayer molybdenum disulfide (MoS2) is placed atop a homogenous self-assembled layer of core-shell CdSSe QDs. We demonstrate efficient non-radiative Forster resonant energy transfer (FRET) from QDs into MoS2 and prove that modest gate-induced variation in the excitonic absorption of MoS2 lead to large (~500%) changes in the FRET rate. This, in turn, allows for up to ~75% electrical modulation of QD photoluminescence intensity. The hybrid QD/MoS2 devices operate within a small voltage range, allow for continuous modification of the QD photoluminescence intensity, and can be used for selective tuning of QDs emitting in the visible-IR range.

تحميل البحث