Observation of universal strong orbital-dependent correlation effects in iron chalcogenides


الملخص بالإنكليزية

Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide (FeCh) superconductors, the only iron-based family in proximity to an insulating phase. Here, we use angle-resolved photoemission spectroscopy (ARPES) to measure three representative FeCh superconductors, FeTe0.56Se0.44, K0.76Fe1.72Se2, and monolayer FeSe film grown on SrTiO3. We show that, these FeChs are all in a strongly correlated regime at low temperatures, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi-surface topologies. Furthermore, raising temperature brings all three compounds from a metallic superconducting state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that FeChs display universal orbital-selective strong correlation behaviors that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase (OSMP), hence placing strong constraints for theoretical understanding of iron-based superconductors.

تحميل البحث