We study a one-dimensional quantum problem of two particles interacting with a third one via a scale-invariant subcritically attractive inverse square potential, which can be realized, for example, in a mixture of dipoles and charges confined to one dimension. We find that above a critical mass ratio, this version of the Calogero problem exhibits the generalized Efimov effect, the emergence of discrete scale invariance manifested by a geometric series of three-body bound states with an accumulation point at zero energy.