Demagnetization dynamics of non-interacting trapped fermions


الملخص بالإنكليزية

Motivated by several experimental efforts to understand spin diffusion and transport in ultracold fermionic gases, we study the spin dynamics of initially spin-polarized ensembles of harmonically trapped non-interacting spin-1/2 fermionic atoms, subjected to a magnetic field gradient. We obtain simple analytic expressions for spin observables in the presence of both constant and linear magnetic field gradients, with and without a spin-echo pulse, and at zero and finite temperatures. The analysis shows the relevance of spin-motional coupling in the non-interacting regime where the demagnetization decay rate at short times can be faster than the experimentally measured rates in the strongly interacting regime under similar trapping conditions. Our calculations also show that particle motion limits the ability of a spin-echo pulse to remove the effect of magnetic field inhomogeneity, and that a spin-echo pulse can instead lead to an increased decay of magnetization at times comparable to the trapping period.

تحميل البحث