Roots of Dehn twists about multicurves


الملخص بالإنكليزية

A textit{multicurve} $C$ on a closed orientable surface is defined to be a finite collection of disjoint non-isotopic essential simple closed curves. The Dehn twist $t_{C}$ about $C$ is the product of the Dehn twists about the individual curves. In this paper, we give necessary and sufficient conditions for the existence of a root of such a Dehn twist, that is, a homeomorphism $h$ such that $h^n = t_{C}$. We give combinatorial data that corresponds to such roots, and use it to determine upper bounds for $n$. Finally, we classify all such roots up to conjugacy for surfaces of genus 3 and 4.

تحميل البحث