Ground state of doped cuprates from first principles quantum Monte Carlo calculations


الملخص بالإنكليزية

The author reports on new high-fidelity simulations of charge carriers in the high-T$_c$ cuprate materials using quantum Monte Carlo techniques applied to the first principles Hamiltonian. With this high accuracy technique, the doped ground state is found to be a spin polaron, in which charge is localized through a strong interaction with the spin. This spin polaron has calculated properties largely similar to the phenomenology of the cuprates, and may be the object which forms the Fermi surface and charge inhomogeneity in these materials. The spin polaron has some unique features that should be visible in X-ray, EELS, and neutron experiments. The results contained in this paper comprise an accurate first principles derived paradigm from which to study superconductivity in the cuprates.

تحميل البحث