The problem of controlling and stabilising solutions to the Kuramoto-Sivashinsky equation is studied in this paper. We consider a generalised form of the equation in which the effects of an electric field and dispersion are included. Both the feedback and optimal control problems are studied. We prove that we can control arbitrary nontrivial steady states of the Kuramoto-Sivashinsky equation, including travelling wave solutions, using a finite number of point actuators. The number of point actuators needed is related to the number of unstable modes of the equation. Furthermore, the proposed control methodology is shown to be robust with respect to changing the parameters in the equation, e.g. the viscosity coefficient or the intensity of the electric field. We also study the problem of controlling solutions of coupled systems of Kuramoto-Sivashinsky equations. Possible applications to controlling thin film flows are discussed. Our rigorous results are supported by extensive numerical simulations.