We report two theoretical discoveries for $mathbb{Z}_2$-topological metals and semimetals. It is shown first that any dimensional $mathbb{Z}_2$ Fermi surface is topologically equivalent to a Fermi point. Then the famous conventional no-go theorem, which was merely proven before for $mathbb{Z}$ Fermi points in a periodic system without any discrete symmetry, is generalized to that the total topological charge is zero for all cases. Most remarkably, we find and prove an unconventional strong no-go theorem: all $mathbb{Z}_2$ Fermi points have the same topological charge $ u_{mathbb{Z}_2} =1$ or $0$ for periodic systems. Moreover, we also establish all six topological types of $mathbb{Z}_2$ models for realistic physical dimensions.