CFSFDP (clustering by fast search and find of density peaks) is recently developed density-based clustering algorithm. Compared to DBSCAN, it needs less parameters and is computationally cheap for its non-iteration. Alex. at al have demonstrated its power by many applications. However, CFSFDP performs not well when there are more than one density peak for one cluster, what we name as no density peaks. In this paper, inspired by the idea of a hierarchical clustering algorithm CHAMELEON, we propose an extension of CFSFDP,E_CFSFDP, to adapt more applications. In particular, we take use of original CFSFDP to generating initial clusters first, then merge the sub clusters in the second phase. We have conducted the algorithm to several data sets, of which, there are no density peaks. Experiment results show that our approach outperforms the original one due to it breaks through the strict claim of data sets.