Entanglement between exciton and mechanical modes via dissipation-induced coupling


الملخص بالإنكليزية

We analyze the entanglement between two matter modes in a hybrid quantum system consists of a microcavity, a quantum well, and a mechanical oscillator. Although the exciton mode in the quantum well and the mechanical oscillator are initially uncoupled, their interaction through the microcavity field results in an indirect exciton-mode--mechanical-mode coupling. We show that this coupling is a Fano-Agarwal-type coupling induced by the decay of the exciton and the mechanical modes caused by the leakage of photons through the microcavity to the environment. Using experimental parameters and for slowly varying microcavity field, we show that the generated coupling leads to an exciton-mode--mechanical-mode entanglement. The maximum entanglement is achieved at the avoided level crossing frequency, where the hybridization of the two modes is maximum. The entanglement is also very robust against the phonon thermal bath temperature.

تحميل البحث