On Approximating the Sum-Rate for Multiple-Unicasts


الملخص بالإنكليزية

We study upper bounds on the sum-rate of multiple-unicasts. We approximate the Generalized Network Sharing Bound (GNS cut) of the multiple-unicasts network coding problem with $k$ independent sources. Our approximation algorithm runs in polynomial time and yields an upper bound on the joint source entropy rate, which is within an $O(log^2 k)$ factor from the GNS cut. It further yields a vector-linear network code that achieves joint source entropy rate within an $O(log^2 k)$ factor from the GNS cut, but emph{not} with independent sources: the code induces a correlation pattern among the sources. Our second contribution is establishing a separation result for vector-linear network codes: for any given field $mathbb{F}$ there exist networks for which the optimum sum-rate supported by vector-linear codes over $mathbb{F}$ for independent sources can be multiplicatively separated by a factor of $k^{1-delta}$, for any constant ${delta>0}$, from the optimum joint entropy rate supported by a code that allows correlation between sources. Finally, we establish a similar separation result for the asymmetric optimum vector-linear sum-rates achieved over two distinct fields $mathbb{F}_{p}$ and $mathbb{F}_{q}$ for independent sources, revealing that the choice of field can heavily impact the performance of a linear network code.

تحميل البحث