Cosmic ray propagation is diffusive because of pitch angle scattering by waves. We demonstrate that if the high-amplitude magnetohydrodynamic turbulence with $tilde B/langle Brangle sim 1$ is present on top of the mean field gradient, the diffusion becomes asymmetric. As an example, we consider the vertical transport of cosmic rays in our Galaxy propagating away from a point-like source. We solve this diffusion problem analytically using a one-dimensional Markov chain analysis. We obtained that the cosmic ray density markedly differs from the standard diffusion prediction and has a sizable effect on their distribution throughout the galaxy. The equation for the continuous limit is also derived, which shows limitations of the convection-diffusion equation.