Random intersection graphs have received much interest and been used in diverse applications. They are naturally induced in modeling secure sensor networks under random key predistribution schemes, as well as in modeling the topologies of social networks including common-interest networks, collaboration networks, and actor networks. Simply put, a random intersection graph is constructed by assigning each node a set of items in some random manner and then putting an edge between any two nodes that share a certain number of items. Broadly speaking, our work is about analyzing random intersection graphs, and models generated by composing it with other random graph models including random geometric graphs and ErdH{o}s-Renyi graphs. These compositional models are introduced to capture the characteristics of various complex natural or man-made networks more accurately than the existing models in the literature. For random intersection graphs and their compositions with other random graphs, we study properties such as ($k$-)connectivity, ($k$-)robustness, and containment of perfect matchings and Hamilton cycles. Our results are typically given in the form of asymptotically exact probabilities or zero-one laws specifying critical scalings, and provide key insights into the design and analysis of various real-world networks.