A theory of fractional kinetics of glial cancer cells is presented. A role of the migration-proliferation dichotomy in the fractional cancer cell dynamics in the outer-invasive zone is discussed an explained in the framework of a continuous time random walk. The main suggested model is based on a construction of a 3D comb model, where the migration-proliferation dichotomy becomes naturally apparent and the outer-invasive zone of glioma cancer is considered as a fractal composite with a fractal dimension $frD<3$.