We prove that any word hyperbolic group which is virtually compact special (in the sense of Haglund and Wise) is conjugacy separable. As a consequence we deduce that all word hyperbolic Coxeter groups and many classical small cancellation groups are conjugacy separable. To get the main result we establish a new criterion for showing that elements of prime order are conjugacy distinguished. This criterion is of independent interest; its proof is based on a combination of discrete and profinite (co)homology theories.