A microscopic approach to $^{3}$He scattering


الملخص بالإنكليزية

We propose a practical folding model to describe $^{3}$He elastic scattering. In the model, $^{3}$He optical potentials are constructed by making the folding procedure twice. First the nucleon-target potential is evaluated by folding the Melbourne $g$-matrix with the target density and localizing the nonlocal folding potential with the Brieva--Rook method, and second the resulting local nucleon-target potential is folded with the $^{3}$He density. This double single-folding model well describes $^{3}$He elastic scattering from $^{58}$Ni and $^{208}$Pb targets in a wide incident-energy range from 30 MeV/nucleon to 150 MeV/nucleon with no adjustable parameter. Spin-orbit force effects on differential cross sections are found to be appreciable only at higher incident energies such as 150 MeV/nucleon. Three-nucleon breakup effects of $^{3}$He are investigated with the continuum discretized coupled-channels method and are found to be appreciable only at lower incident energies around 40 MeV/nucleon. Effects of knock-on exchange processes are also analyzed.

تحميل البحث