On the cosmic ray spectrum from type II Supernovae expanding in their red giant presupernova wind


الملخص بالإنكليزية

While from the energetic point of view SNRs are viable sources of Galactic CRs, the issue of whether they can accelerate protons up to PeV remains unsolved. Here we discuss particle acceleration at the forward shock of SN and discuss the possibility that the escaping particle current may excite a non-resonant instability that in turn leads to the formation of resonant modes confining particles close to the shock and increasing the maximum energy. This mechanism works throughout the expansion of the SN explosion, from the ejecta dominated (ED) to the Sedov-Taylor (ST) phase. Because of their higher explosion rate,we focus on type II SNae expanding in the slow, dense red supergiant wind. When the explosion occurs in such winds, the transition between the ED and the ST phase is likely to take place within a few tens of years. As a result, the spectrum of accelerated particles shows a break in the slope, at the maximum energy (Em) achieved at the beginning of the ST phase. Above this energy, the spectrum becomes steeper but remains a power law than developing an exponential cutoff. We show that for type II SNae typical parameters, proton Em can easily reach PeV energies, confirming that type II SNRs are the best candidate sources for CRs at the knee. We have tried to fit KASCADE-Grande, ARGO -YBJ and YAC1-Tibet Array data with our model but we could not find any parameter combination that could explain all data sets. Indeed the recent measurement of the proton and helium spectra in the knee region, with the ARGO-YBJ and YAC1-Tibet Array, has made the situation very confused. These measurements suggest that the knee in the light component is at 650 TeV, appreciably below the overall spectrum knee. This finding would resolve the problem of reaching very high energies in SNae, but, on the other hand, it would open a critical issue in the transition region between Galactic and extragalactic CRs.

تحميل البحث