Solyanik estimates in ergodic theory


الملخص بالإنكليزية

Let $U_1, ldots, U_n$ be a collection of commuting measure preserving transformations on a probability space $(Omega, Sigma, mu)$. Associated with these measure preserving transformations is the ergodic strong maximal operator $mathsf M ^ast _{mathsf S}$ given by [ mathsf M ^ast _{mathsf S} f(omega) := sup_{0 in R subset mathbb{R}^n}frac{1}{#(R cap mathbb{Z}^n)}sum_{(j_1, ldots, j_n) in Rcap mathbb{Z}^n}big|f(U_1^{j_1}cdots U_n^{j_n}omega)big|, ] where the supremum is taken over all open rectangles in $mathbb{R}^n$ containing the origin whose sides are parallel to the coordinate axes. For $0 < alpha < 1$ we define the sharp Tauberian constant of $mathsf M ^ast _{mathsf S}$ with respect to $alpha$ by [ mathsf C ^ast _{mathsf S} (alpha) := sup_{substack{E subset Omega mu(E) > 0}}frac{1}{mu(E)}mu({omega in Omega : mathsf M ^ast _{mathsf S} chi_E (omega) > alpha}). ] Motivated by previous work of A. A. Solyanik and the authors regarding Solyanik estimates for the geometric strong maximal operator in harmonic analysis, we show that the Solyanik estimate [ lim_{alpha rightarrow 1}mathsf C ^ast _{mathsf S}(alpha) = 1 ] holds, and that in particular we have [mathsf C ^ast _{mathsf S}(alpha) - 1 lesssim_n (1 - frac{1}{alpha})^{1/n}] provided that $alpha$ is sufficiently close to $1$. Solyanik estimates for centered and uncentered ergodic Hardy-Littlewood maximal operators associated with $U_1, ldots, U_n$ are shown to hold as well. Further directions for research in the field of ergodic Solyanik estimates are also discussed.

تحميل البحث