An Upper Bound on the Complexity of Recognizable Tree Languages


الملخص بالإنكليزية

The third author noticed in his 1992 PhD Thesis [Sim92] that every regular tree language of infinite trees is in a class $Game (D_n({bfSigma}^0_2))$ for some natural number $ngeq 1$, where $Game$ is the game quantifier. We first give a detailed exposition of this result. Next, using an embedding of the Wadge hierarchy of non self-dual Borel subsets of the Cantor space $2^omega$ into the class ${bfDelta}^1_2$, and the notions of Wadge degree and Veblen function, we argue that this upper bound on the topological complexity of regular tree languages is much better than the usual ${bfDelta}^1_2$.

تحميل البحث