Adding CP to flavour symmetries


الملخص بالإنكليزية

I propose the use of CP-odd invariants, which are independent of basis and valid for any choice of CP transformation, as a powerful approach to study CP in the presence of flavour symmetries. As examples of the approach I focus on Lagrangians invariant under $Delta(27)$. I comment on the consequences of adding a specific CP symmetry to a Lagrangian and distinguish cases where several $Delta(27)$ singlets are present depending on how they couple to the triplets. One of the examples included is a very simple toy model with explicit CP violation with calculable phases, which is referred to as explicit geometrical CP violation by comparison with previously known cases of (spontaneous) geometrical CP violation.

تحميل البحث