Given a large data matrix $Ainmathbb{R}^{ntimes n}$, we consider the problem of determining whether its entries are i.i.d. with some known marginal distribution $A_{ij}sim P_0$, or instead $A$ contains a principal submatrix $A_{{sf Q},{sf Q}}$ whose entries have marginal distribution $A_{ij}sim P_1 eq P_0$. As a special case, the hidden (or planted) clique problem requires to find a planted clique in an otherwise uniformly random graph. Assuming unbounded computational resources, this hypothesis testing problem is statistically solvable provided $|{sf Q}|ge C log n$ for a suitable constant $C$. However, despite substantial effort, no polynomial time algorithm is known that succeeds with high probability when $|{sf Q}| = o(sqrt{n})$. Recently Meka and Wigderson cite{meka2013association}, proposed a method to establish lower bounds within the Sum of Squares (SOS) semidefinite hierarchy. Here we consider the degree-$4$ SOS relaxation, and study the construction of cite{meka2013association} to prove that SOS fails unless $kge C, n^{1/3}/log n$. An argument presented by Barak implies that this lower bound cannot be substantially improved unless the witness construction is changed in the proof. Our proof uses the moments method to bound the spectrum of a certain random association scheme, i.e. a symmetric random matrix whose rows and columns are indexed by the edges of an Erdos-Renyi random graph.