Bosonic Kondo-Hubbard model


الملخص بالإنكليزية

We study, using quantum Monte-Carlo simulations, the bosonic Kondo-Hubbard model in a two dimensional square lattice. We explore the phase diagram and analyse the mobility of particles and magnetic properties. At unit filling, the transition from a paramagnetic Mott insulator to a ferromagnetic superfluid appears continuous, contrary to what was predicted with mean field. For double occupation per site, both the Mott insulating and superfluid phases are ferromagnetic and the transition is still continuous. Multiband tight binding Hamiltonians can be realized in optical lattice experiments, which offer not only the possibility of tuning the different energy scales over wide ranges, but also the option of loading the system with either fermionic or bosonic atoms.

تحميل البحث