We propose FrogWild, a novel algorithm for fast approximation of high PageRank vertices, geared towards reducing network costs of running traditional PageRank algorithms. Our algorithm can be seen as a quantized version of power iteration that performs multiple parallel random walks over a directed graph. One important innovation is that we introduce a modification to the GraphLab framework that only partially synchronizes mirror vertices. This partial synchronization vastly reduces the network traffic generated by traditional PageRank algorithms, thus greatly reducing the per-iteration cost of PageRank. On the other hand, this partial synchronization also creates dependencies between the random walks used to estimate PageRank. Our main theoretical innovation is the analysis of the correlations introduced by this partial synchronization process and a bound establishing that our approximation is close to the true PageRank vector. We implement our algorithm in GraphLab and compare it against the default PageRank implementation. We show that our algorithm is very fast, performing each iteration in less than one second on the Twitter graph and can be up to 7x faster compared to the standard GraphLab PageRank implementation.