Coupled nonlinear oscillators can exhibit a wide variety of patterns. We study the Brusselator as a prototypical autocatalytic reaction diffusion model. Working in the limit of strong nonlinearity provides a clear timescale separation that leads to a canard explosion in a single Brusselator. In this highly nonlinear regime it is numerically found that rings of coupled Brusselators do not follow the predictions from Turning analysis. We find that the behavior can be explained using a piecewise linear approximation.