Improved Numerical Cherenkov Instability Suppression in the Generalized PSTD PIC Algorithm


الملخص بالإنكليزية

The family of generalized Pseudo-Spectral Time Domain (including the Pseudo-Spectral Analytical Time Domain) Particle-in-Cell algorithms offers substantial versatility for simulating particle beams and plasmas, and well written codes using these algorithms run reasonably fast. When simulating relativistic beams and streaming plasmas in multiple dimensions, they are, however, subject to the numerical Cherenkov instability. Previous studies have shown that instability growth rates can be reduced substantially by modifying slightly the transverse fields as seen by the streaming particles . Here, we offer an approach which completely eliminates the fundamental mode of the numerical Cherenkov instability while minimizing the transverse field corrections. The procedure, numerically computed residual growth rates (from weaker, higher order instability aliases), and comparisons with WARP simulations are presented. In some instances, there are no numerical instabilities whatsoever, at least in the linear regime.

تحميل البحث