Topological $R$PdBi half-Heusler semimetals: a new family of non-centrosymmetric magnetic superconductors


الملخص بالإنكليزية

We report superconductivity and magnetism in a new family of topological semimetals, the ternary half Heusler compounds $R$PdBi ($R$ : rare earth). In this series, tuning of the rare earth $f$-electron component allows for simultaneous control of both lattice density via lanthanide contraction, as well as the strength of magnetic interaction via de Gennes scaling, allowing for a unique tuning of both the normal state band inversion strength, superconducting pairing and magnetically ordered ground states. Antiferromagnetism with ordering vector (0.5,0.5,0.5) occurs below a Neeel temperature that scales with de Gennes factor $dG$, while a superconducting transition is simultaneously linearly suppressed. With superconductivity appearing in a system with non-centrosymmetric crystallographic symmetry, the possibility of spin-triplet Cooper pairing with non-trivial topology analogous to that predicted for the normal state electronic structure provides a unique and rich opportunity to realize both predicted and new exotic excitations in topological materials.

تحميل البحث