Majorana Zero Modes and Topological Quantum Computation


الملخص بالإنكليزية

We provide a current perspective on the rapidly developing field of Majorana zero modes in solid state systems. We emphasize the theoretical prediction, experimental realization, and potential use of Majorana zero modes in future information processing devices through braiding-based topological quantum computation. Well-separated Majorana zero modes should manifest non-Abelian braiding statistics suitable for unitary gate operations for topological quantum computation. Recent experimental work, following earlier theoretical predictions, has shown specific signatures consistent with the existence of Majorana modes localized at the ends of semiconductor nanowires in the presence of superconducting proximity effect. We discuss the experimental findings and their theoretical analyses, and provide a perspective on the extent to which the observations indicate the existence of anyonic Majorana zero modes in solid state systems. We also discuss fractional quantum Hall systems (the 5/2 state) in this context. We describe proposed schemes for carrying out braiding with Majorana zero modes as well as the necessary steps for implementing topological quantum computation.

تحميل البحث