$(111)$ surface states of SnTe


الملخص بالإنكليزية

The characterization and applications of topological insulators depend critically on their protected surface states, which, however, can be obscured by the presence of trivial dangling bond states. Our first principle calculations show that this is the case for the pristine $(111)$ surface of SnTe. Yet, the predicted surface states unfold when the dangling bond states are passivated in proper chemisorption. We further extract the anisotropic Fermi velocities, penetration lengths and anisotropic spin textures of the unfolded $barGamma$- and $bar M$-surface states, which are consistent with the theory in http://dx.doi.org/10.1103/PhysRevB.86.081303 Phys. Rev. B 86, 081303 (R). More importantly, this chemisorption scheme provides an external control of the relative energies of different Dirac nodes, which is particularly desirable in multi-valley transport.

تحميل البحث