We study incompressible surfaces constructed by Culler-Shalen theory in the context of twisted Alexander polynomials. For a $1$st cohomology class of a $3$-manifold the coefficients of twisted Alexander polynomials induce regular functions on the $SL_2(mathbb{C})$-character variety. We prove that if an ideal point gives a Thurston norm minimizing non-separating surface dual to the cohomology class, then the regular function of the highest degree has a finite value at the ideal point.