Numerical solutions of the Schrodinger equation with source terms or time-dependent potentials


الملخص بالإنكليزية

We develop an approach to solving numerically the time-dependent Schrodinger equation when it includes source terms and time-dependent potentials. The approach is based on the generalized Crank-Nicolson method supplemented with an Euler-MacLaurin expansion for the time-integrated nonhomogeneous term. By comparing the numerical results with exact solutions of analytically solvable models, we find that the method leads to precision comparable to that of the generalized Crank-Nicolson method applied to homogeneous equations. Furthermore, the systematic increase in precision generally permits making estimates of the error.

تحميل البحث