Thermoelectric transport properties of a T-shaped double quantum dot system in the Coulomb blockade regime


الملخص بالإنكليزية

We investigate the thermoelectric properties of a T-shaped double quantum dot system described by a generalized Anderson Hamiltonian. The systems electrical conduction (G) and the fundamental thermoelectric parameters such as the Seebeck coefficient ($S$) and the thermal conductivity ($kappa$), along with the systems thermoelectric figure of merit (ZT) are numerically estimated based on a Greens function formalism that includes contributions up to the Hartree-Fock level. Our results account for finite onsite Coulomb interaction terms in both component quantum dots and discuss various ways leading to an enhanced thermoelectric figure of merit for the system. We demonstrate that the presence of Fano resonances in the Coulomb blockade regime is responsible for a strong violation of the Wiedemann-Franz law and a considerable enhancement of the systems figure of merit ($ZT$).

تحميل البحث