Two-Dimensional Magnetotransport in a Black Phosphorus Naked Quantum Well


الملخص بالإنكليزية

Black phosphorus (bP) is the second known elemental allotrope with a layered crystal structure that can be mechanically exfoliated down to atomic layer thickness. We have fabricated bP naked quantum wells in a back-gated field effect transistor geometry with bP thicknesses ranging from $6pm1$ nm to $47pm1$ nm. Using an encapsulating polymer superstrate, we have suppressed bP oxidation and have observed field effect mobilities up to 600 cm$^2$/Vs and on/off current ratios exceeding $10^5$. Importantly, Shubnikov-de Haas (SdH) oscillations observed in magnetotransport measurements up to 35 T reveal the presence of a 2-D hole gas with Schrodinger fermion character in an accumulation layer at the bP/oxide interface. Our work demonstrates that 2-D electronic structure and 2-D atomic structure are independent. 2-D carrier confinement can be achieved in layered semiconducting materials without necessarily approaching atomic layer thickness, advantageous for materials that become increasingly reactive in the few-layer limit such as bP.

تحميل البحث