Reconnection outflow generated turbulence in the solar wind


الملخص بالإنكليزية

Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the features of the associated locally generated turbulence in the solar wind. We show that the outflow structures, such as discontinuites, Kelvin-Helmholtz (KH) unstable flux tubes or continuous space filling flows cannot be distinguished from one-point WIND measurements. In both models the reconnection outflows can generate more or less spatially extended turbulent boundary layers (TBDs). The structure of an unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and break locations show that reconnection outflows can control the local field and plasma conditions which may play in favor of one or another turbulent dissipation mechanisms with their characteristic scales and wavenumbers.

تحميل البحث