$L_p$-stabilization of integrator chains subject to input saturation using Lyapunov-based homogeneous design


الملخص بالإنكليزية

Consider the $n$-th integrator $dot x=J_nx+sigma(u)e_n$, where $xinmathbb{R}^n$, $uin mathbb{R}$, $J_n$ is the $n$-th Jordan block and $e_n=(0 cdots 0 1)^Tinmathbb{R}^n$. We provide easily implementable state feedback laws $u=k(x)$ which not only render the closed-loop system globally asymptotically stable but also are finite-gain $L_p$-stabilizing with arbitrarily small gain. These $L_p$-stabilizing state feedbacks are built from homogeneous feedbacks appearing in finite-time stabilization of linear systems. We also provide additional $L_infty$-stabilization results for the case of both internal and external disturbances of the $n$-th integrator, namely for the perturbed system $dot x=J_nx+e_nsigma (k(x)+d)+D$ where $dinmathbb{R}$ and $Dinmathbb{R}^n$.

تحميل البحث