We discuss minisuperspace models within the framework of varying physical constants theories including $Lambda$-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansatze for the variability of constants: $c(a) = c_0 a^n$ and $G(a)=G_0 a^q$. We find that most of the varying $c$ and $G$ minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe from nothing ($a=0)$ to a Friedmann geometry with the scale factor $a_t$ is large for growing $c$ models and is strongly suppressed for diminishing $c$ models. As for $G$ varying, the probability of tunneling is large for $G$ diminishing, while it is small for $G$ increasing. In general, both varying $c$ and $G$ change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.