The surface magnetic field and chemical abundance distributions of the B2V helium-strong star HD184927


الملخص بالإنكليزية

A new time series of high-resolution Stokes I and V spectra of the magnetic B2V star HD 184927 has been obtained in the context of the Magnetism in Massive Stars (MiMeS) Large Program with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope and dimaPol liquid crystal spectropolarimeter at 1.8-m telescope of Dominion Astrophysical Observatory. We model the optical and UV spectrum obtained from the IUE archive to infer the stellar physical parameters. Using magnetic field measurements we derive an improved rotational period of 9.53102+-0.0007d. We infer the longitudinal magnetic field from lines of H, He and various metals, revealing large differences between the apparent field strength variations determined from different elements. Magnetic Doppler Imaging using He and O lines yields strongly nonuniform surface distributions of these elements. We demonstrate that the diversity of longitudinal field variations can be understood as due to the combination of element-specific surface abundance distributions in combination with a surface magnetic field that is comprised of dipolar and quadrupolar components. We have reanalyzed IUE high resolution spectra, confirming strong modulation of wind-sensitive Civ and Siv resonance lines. However, we are unable to detect any modulation of the H$alpha$ profile attributable to a stellar magnetosphere. We conclude that HD 184927 hosts a centrifugal magnetosphere, albeit one that is undetectable at optical wavelengths. The magnetic braking timescale of HD 184927 is computed to be $tau_J = 0.96$ or $5.8$ Myr. These values are consistent with the slow rotation and estimated age of the star.

تحميل البحث