Direct Observations of Tether-cutting Reconnection During a Major Solar Event From 2014 February 24 to 25


الملخص بالإنكليزية

Using the multi-wavelength data from Atmospheric Imaging Assembly on board the Solar Dynamic Observatory, we investigated two successive solar flares, a C5.1 confined flare and an X4.9 ejective flare with a halo coronal mass ejection,in NOAA AR 11990 from 2014 Feb 24 to 25. Before the confined are onset, EUV brightening beneath the filament was detected. As the are began, a twisted helical flux rope (FR) wrapping around the filament moved upward and then stopped, and in the meantime an obvious X-ray source below it was observed. Prior to the ejective X4.9 flare, some pre-existing loop structures in the active region interacted with each other, which produced a brightening region beneath the filament. Meanwhile, a small flaring loop appeared below the interaction region and some new helical lines connecting the far ends of the loop structures was gradually formed and continually added into the former twisted FR. Then, due to the resulting imbalance between the magnetic pressure and tension, the new FR together with the filament erupted outward. Our observations coincide well with tether-cutting model, suggesting that the two flares probably have the same triggering mechanism, i.e., tether-cutting reconnection. To our knowledge, this is the first direct observation of tether-cutting reconnection occurring between the pre-existing loops in active region. In the ejective flare case, the erupting filament exhibited an omega-like kinked structure and underwent an exponential rise after a slow-rise phase, indicating the kink instability might be also responsible for the eruption initiation.

تحميل البحث