We have used the JVLA at the 1 cm band to map five highly-excited metastable inversion transitions of ammonia, (J,K)=(6,6), (7,7), (9,9), (10,10), and (13,13), in W51 IRS2 with ~0.2 angular resolution. We present detections of both thermal (extended) ammonia emission in the five inversion lines, with rotational states ranging in energy from about 400 to 1700 K, and point-like ammonia maser emission in the (6,6), (7,7), and (9,9) lines. The thermal ammonia emits around a velocity of 60 km/s, near the clouds systemic velocity, is elongated in the east-west direction across 4 and is confined by the HII regions W51d, W51d1, and W51d2. The ammonia masers are observed in the eastern tip of the dense clump traced by thermal ammonia, offset by 0.65 to the East from its emission peak, and have a peak velocity at ~47.5 km/s. No maser components are detected near the systemic velocity. The ammonia masers are separated by 0.65 (3500 AU) from the (rare) vibrationally-excited SiO masers, excited by the deeply-embedded YSO W51-North. This excludes that the two maser species are excited by the same object. Interestingly, the ammonia masers originate at the same sky position as a peak in a submm line of SO2 imaged with the SMA, tracing a face-on circumstellar disk/ring around W51-North. In addition, the thermal emission from the most highly excited ammonia lines, (10,10) and (13,13), shows two main condensations, the dominant one towards W51-North with the SiO/H2O masers, and a weaker peak at the ammonia maser position. We propose a scenario where the ring seen in SO2 emission is a circumbinary disk surrounding (at least) two high-mass YSOs, W51-North (exciting the SiO masers) and a nearby companion (exciting the ammonia masers), separated by 3500 AU. This finding indicates a physical connection (in a binary) between the two rare SiO and ammonia maser species.