We introduce a Python framework designed to automate the most common tasks associated with the extraction and upscaling of the statistics of single-impact crater functions to inform coefficients of continuum equations describing surface morphology evolution. Designed with ease-of-use in mind, the framework allows users to extract meaningful statistical estimates with very short Python programs. Wrappers to interface with specific simulation packages, routines for statistical extraction of output, and fitting and differentiation libraries are all hidden behind simple, high-level user-facing functions. In addition, the framework is extensible, allowing advanced users to specify the collection of specialized statistics or the creation of customized plots. The framework is hosted on the BitBucket service under an open-source license, with the aim of helping non-specialists easily extract preliminary estimates of relevant crater function results associated with a particular experimental system.