The well known Sandpile model of self-organized criticality generates avalanches of all length and time scales, without tuning any parameters. In the original models the external drive is randomly selected. Here we investigate a drive which depends on the present state of the system, namely the effect of favoring sites with a certain height in the deposition process. If sites with height three are favored, the system stays in a critical state. Our numerical results indicate the same universality class as the original model with random depositition, although the stationary state is approached very differently. In constrast, when favoring sites with height two, only avalanches which cover the entire system occur. Furthermore, we investigate the distributions of sites with a certain height, as well as the transient processes of the different variants of the external drive.