Determinantal inequalities for block triangular matrices


الملخص بالإنكليزية

Let $T=begin{bmatrix} X &Y 0 & Zend{bmatrix}$ be an $n$-square matrix, where $X, Z$ are $r$-square and $(n-r)$-square, respectively. Among other determinantal inequalities, it is proved $det(I_n+T^*T)ge det(I_r+X^*X)cdot det(I_{n-r}+Z^*Z)$ with equality holds if and only if $Y=0$.

تحميل البحث