An excess of dusty starbursts related to the Spiderweb galaxy


الملخص بالإنكليزية

We present APEX LABOCA 870 micron observations of the field around the high-redshift radio galaxy MRC1138-262 at z=2.16. We detect 16 submillimeter galaxies in this ~140 square arcmin bolometer map with flux densities in the range 3-11 mJy. The raw number counts indicate a density of submillimeter galaxies (SMGs) that is up to four times that of blank field surveys. Based on an exquisite multiwavelength database, including VLA 1.4 GHz radio and infrared observations, we investigate whether these sources are members of the protocluster structure at z=2.2. Using Herschel PACS+SPIRE and Spitzer MIPS photometry, we derive reliable far-infrared photometric redshifts for all sources. Follow-up VLT ISAAC and SINFONI near-infrared spectra confirm that four of these SMGs have redshifts of z=2.2. We also present evidence that another SMG in this field, detected earlier at 850 micron, has a counterpart that exhibits Halpha and CO(1-0) emission at z=2.15. Including the radio galaxy and two SMGs with far-IR photometric redshifts at z=2.2, we conclude that at least eight submm sources are part of the protocluster at z=2.16 associated with the radio galaxy MRC1138-262. We measure a star formation rate density SFRD ~1500 Msun yr^-1 Mpc^-3, four magnitudes higher than the global SFRD of blank fields at this redshift. Strikingly, these eight sources are concentrated within a region of 2 Mpc (the typical size of clusters in the local universe) and are distributed within the filaments traced by the Halpha emitters at z=2.2. This concentration of massive, dusty starbursts is not centered on the submillimeter-bright radio galaxy which could support the infalling of these sources into the cluster center. Approximately half (6/11) of the SMGs that are covered by the Halpha imaging data are associated with Halpha emitters, demonstrating the potential of tracing SMG counterparts with this population (abridged).

تحميل البحث