We have produced a multiannual climatology of airborne dust from Martian year 24 to 31 using multiple datasets of retrieved or estimated column optical depths. The datasets are based on observations of the Martian atmosphere from April 1999 to July 2013 made by different orbiting instruments: the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). The procedure we have adopted consists of gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. Our gridding method calculates averages and uncertainties on a regularly spaced, but possibly incomplete, spatio-temporal grid, using an iterative procedure weighted in space, time, and retrieval uncertainty. In order to evaluate strengths and weaknesses of the resulting gridded maps, we validate them with independent observations of CDOD. We have statistically analyzed the irregularly gridded maps to provide an overview of the dust climatology on Mars over eight years, specifically in relation to its interseasonal and interannual variability. Finally, we have produced multiannual, regular daily maps of CDOD by spatially interpolating the irregularly gridded maps using a kriging method. These synoptic maps are used as dust scenarios in the Mars Climate Database version 5, and are useful in many modelling applications in addition to forming a basis for instrument intercomparisons. The derived dust maps for the eight available Martian years are publicly available and distributed with open access.