On Nichols (braided) Lie algebras


الملخص بالإنكليزية

We prove {rm (i)} Nichols algebra $mathfrak B(V)$ of vector space $V$ is finite-dimensional if and only if Nichols braided Lie algebra $mathfrak L(V)$ is finite-dimensional; {rm (ii)} If the rank of connected $V$ is $2$ and $mathfrak B(V)$ is an arithmetic root system, then $mathfrak B(V) = F oplus mathfrak L(V);$ and {rm (iii)} if $Delta (mathfrak B(V))$ is an arithmetic root system and there does not exist any $m$-infinity element with $p_{uu} ot= 1$ for any $u in D(V)$, then $dim (mathfrak B(V) ) = infty$ if and only if there exists $V$, which is twisting equivalent to $V$, such that $ dim (mathfrak L^ - (V)) = infty.$ Furthermore we give an estimation of dimensions of Nichols Lie algebras and two examples of Lie algebras which do not have maximal solvable ideals.

تحميل البحث