Rock is wrapped by paper, paper is cut by scissors, and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms, and the competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more regardless of the particularities of the game. Here we review recent advances on the rock-paper-scissors and related evolutionary games, focusing in particular on pattern formation, the impact of mobility, and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional rock-paper-scissors models and the application of the complex Ginzburg-Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related for example to dynamical effects of coevolutionary rules and invasion reversals due to multi-point interactions, are outlined as well.