The nuclear level densities of $^{194-196}$Pt and $^{197,198}$Au below the neutron separation energy have been measured using transfer and scattering reactions. All the level density distributions follow the constant-temperature description. Each group of isotopes is characterized by the same temperature above the energy threshold corresponding to the breaking of the first Cooper pair. A constant entropy excess $Delta S=1.9$ and $1.1$ $k_B$ is observed in $^{195}$Pt and $^{198}$Au with respect to $^{196}$Pt and $^{197}$Au, respectively, giving information on the available single-particle level space for the last unpaired valence neutron. The breaking of nucleon Cooper pairs is revealed by sequential peaks in the microcanonical caloric curve.