The Schutzenberger category of a semigroup


الملخص بالإنكليزية

In this paper we introduce the Schutzenberger category $mathbb D(S)$ of a semigroup $S$. It stands in relation to the Karoubi envelope (or Cauchy completion) of $S$ in the same way that Schutzenberger groups do to maximal subgroups and that the local divisors of Diekert do to the local monoids $eSe$ of $S$ with $ein E(S)$. In particular, the objects of $mathbb D(S)$ are the elements of $S$, two objects of $mathbb D(S)$ are isomorphic if and only if the corresponding semigroup elements are $mathscr D$-equivalent, the endomorphism monoid at $s$ is the local divisor in the sense of Diekert and the automorphism group at $s$ is the Schutzenberger group of the $mathscr H$-class of $S$. This makes transparent many well-known properties of Greens relations. The paper also establishes a number of technical results about the Karoubi envelope and Schutzenberger category that were used by the authors in a companion paper on syntactic invariants of flow equivalence of symbolic dynamical systems.

تحميل البحث