Spatial patterns of dissipative polariton solitons in semiconductor microcavities


الملخص بالإنكليزية

Semiconductor microcavities operating in the polaritonic regime are highly non-linear, high speed systems due to the unique half-light, half-matter nature of polaritons. Here, we report for the first time the observation of propagating multi-soliton polariton patterns consisting of multi-peak structures either along (x) or perpendicular to (y) the direction of propagation. Soliton arrays of up to 5 solitons are observed, with the number of solitons controlled by the size or power of the triggering laser pulse. The break-up along the x direction occurs due to interplay of bistability, negative effective mass and polariton-polariton scattering, while in the y direction the break-up results from nonlinear phase-dependent interactions of propagating fronts. We show the experimental results are in good agreement with numerical modelling. Our observations are a step towards ultrafast all-optical signal processing using sequences of solitons as bits of information.

تحميل البحث