In this work we have shown precisely that the curvature of a 2-sphere introduces quantum features in the system through the introduction of the noncommutative (NC) parameter that appeared naturally via equations of motion. To obtain this result we used the fact that quantum mechanics can be understood as a NC symplectic geometry, which generalized the standard description of classical mechanics as a symplectic geometry. In this work, we have also analyzed the dynamics of the model of a free particle over a 2-sphere in a NC phase-space. Besides, we have shown the solution of the equations of motion allows one to show the equivalence between the movement of the particle physical degrees of freedom upon a 2-sphere and the one described by a central field. We have considered the effective force felt by the particle as being caused by the curvature of the space. We have analyzed the NC Poisson algebra of classical observables in order to obtain the NC corrections to Newtons second law. We have demonstrated precisely that the curvature of the space acted as an effective potential for a free particle in a flat phase-space. Besides, through NC coherent states quantization we have obtained the Green function of the theory. The result have confirmed that we have an UV cutoff for large momenta in the NC kernel. We have also discussed the relation between affine connection and Dirac brackets, as they describe the proper evolution of the model over the surface of constraints in the Lagrangian and Hamiltonian formalisms, respectively. As an application, we have treated the so-called textit{Zitterbewegung} of the Dirac electron. Since it is assumed to be an observable effect, then we have traced its physical origin by assuming that the electron has an internal structure.