In many cases the standard perturbation approach appears to be too simple to describe precisely the angle resolved photoemission spectrum of strongly correlated electron system. In particular, to describe the momentum asymmetry observed in photoemission spectra of high-Tc cuprates a phenomenological approach based on extremely correlated Fermi-liquid model has been recently introduced. In this paper we analyze the general structure of the Green function of quasiparticles in strongly correlated electron systems and stress that it is defined not only by the self-energy of Hubbard quasiparticles but also by a strength operator. We show that the later leads to an additional odd momentum contribution to the spectral function and alone can explain the observed asymmetry. So, the asymmetry of the ARPES spectra can be a measure of the strength of electron correlations in materials.